Direct Synthesis of 2D-Hexagonal Mesoporous Iron Silicate and its Catalytic Activity for Selective Friedel-Crafts Alkylation
نویسندگان
چکیده
2D-hexagonal mesoporous iron silicate (HMFeS) has been synthesized hydrothermally in the presence of a mixture of an amphiphilic triblock copolymer, pluronic F127 and 1,2,4-trivinylcyclohexane (TVCH) as swelling agent under acidic aqueous conditions. The direct incorporation of iron(III) into 2D-hexagonal silicate framework can be monitored in a optimized molar ratio of water and hydrochloric acid. The mesophase of the materials was investigated by using small-angle powder X-ray diffractions (PXRD), transmission electron microscopy (TEM) image analysis and nitrogen adsorption/desorption studies. TEM image and PXRD revealed that the material had 2D-hexagonal mesoporous architecture. The morphology of the material was investigated by using scanning electron microscope (SEM) and framework bonding by utilizing FT IR spectroscopy. The atomic absorption spectrophotometer (AAS) was used to estimate the incorporated iron sites within the silicate framework. BET surface area (780 m 2 g -1 ) and peak pore size of HMFeS (10.07 nm) is much higher than the pure silica SBA-15 (611 m 2 g -1 and peak pore size of 9.09 nm). This mesoporous material (HMFeS) acts as a very good catalyst in the Friedel Craft benzylation and benzoylation reactions of arenes under optimized reaction condition using benzyl chloride and benzoyl chloride as the bezylating and benzoylating agents, respectively.
منابع مشابه
Ammonium monovanadate: a versatile and reusable catalyst for Friedel-Crafts alkylation and Michael addition of indoles
Ammonium monovanadate (NH4VO3) has been devoted as an efficient, commercially available, eco-friendly and reusable catalyst for the synthesis of bis(indolyl)methanes (BIMs), oxindole derivatives and also Michael adducts of indoles at 50 °C under solvent-free conditions. The reusability of this solid acid catalyst in addition with its selectivity has also been examined.
متن کاملAmmonium monovanadate: a versatile and reusable catalyst for Friedel-Crafts alkylation and Michael addition of indoles
Ammonium monovanadate (NH4VO3) has been devoted as an efficient, commercially available, eco-friendly and reusable catalyst for the synthesis of bis(indolyl)methanes (BIMs), oxindole derivatives and also Michael adducts of indoles at 50 °C under solvent-free conditions. The reusability of this solid acid catalyst in addition with its selectivity has also been examined.
متن کاملFriedel-Crafts alkylation of indoles with epoxides using PW12-APTES@SBA-15
H3PW12O40 (PW12) was immobilized over mesoporous alumina through the reaction of mesoporous alumina functionalized 3-aminopropyl triethoxy silane (3-APTES) and PW12. The surface properties of the functionalized nanocomposite was analyzed by a series of characterization techniques like elemental analysis, FTIR and XRD. XRD and adsorption–desorption analysis shows that the mesostructure of silica...
متن کاملFriedel–Crafts alkylation properties of aluminosilica SBA-15 meso/macroporous monoliths and mesoporous powders
The catalytic activities of SBA-15 aluminosilica meso/macroporous monoliths (Si/Al = 72) and mesoporous powders (Si/Al = 70) have been investigated using batch Friedel–Crafts alkylation of single-ring aromatic compounds, including toluene, ethylbenzene, cumene, and styrene, with benzyl alcohol. The toluene alkylation activities of the meso/macroporous monolith catalysts were compared with nanop...
متن کاملStructurally Divergent Lithium Catalyzed Friedel–Crafts Reactions on Oxetan‐3‐ols: Synthesis of 3,3‐Diaryloxetanes and 2,3‐Dihydrobenzofurans
The first examples of 3,3-diaryloxetanes are prepared in a lithium-catalyzed and substrate dependent divergent Friedel-Crafts reaction. para-Selective Friedel-Crafts reactions of phenols using oxetan-3-ols afford 3,3-diaryloxetanes by displacement of the hydroxy group. These constitute new isosteres for benzophenones and diarylmethanes. Conversely, ortho-selective Friedel-Crafts reactions of ph...
متن کامل